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Abstract

A semi-perturbative calculation of the ghost-gluon vertex in Landau gauge Yang-
Mills theory in four and three Euclidean space-time dimensions is presented. Non-
perturbative gluon and ghost propagators are employed, which have previously
been calculated from a truncated set of Dyson–Schwinger equations and which
are in qualitative and quantitative agreement with corresponding lattice results.
Our results for the ghost-gluon vertex show only relatively small deviations from
the tree-level one in agreement with recent lattice data. In particular, we do not
see any sign for a singular behaviour of the ghost-gluon vertex in the infrared.
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Introduction

The infrared behaviour of QCD Green functions is of fundamental interest. In addition,

these functions provide an important input for many calculations in hadron physics, for recent

reviews see e.g. [1, 2, 3]. As infrared singularities are anticipated for some of these Green

functions, non-perturbative continuum methods are needed to complement the knowledge

gained in lattice Monte-Carlo calculations. Studies using different techniques, such as Dyson-

Schwinger equations (see e.g. [2, 4, 5] and references therein), renormalization group methods

[6], stochastic quantization [7], and lattice Monte-Carlo calculations (see e.g. [8, 9, 10, 11,

12] and references therein) have provided an unified picture of the infrared behaviour of

propagators in Landau gauge QCD in recent years. In this context the propagator of the

Faddeev–Popov ghosts is of special interest: In the Landau gauge this propagator is infrared

enhanced and diverges more strongly than 1/k2 for k2 → 0. On the one hand, this reflects

the Zwanziger-Gribov horizon condition [7, 13, 14]. On the other hand, in the Landau

gauge, it enforces the Kugo–Ojima confinement criterion [15, 16]. The accompanying infrared

suppression of the gluon propagator relates to positivity violation for transverse gluons by

imposing a cut in the gluon propagator [5]. This resolves an old puzzle already encountered

in perturbation theory, which has led to the Oehme-Zimmermann superconvergence relations

[17].

These Landau-gauge studies are complemented by similar ones in the Coulomb gauge.

Also in this gauge the infrared behaviour of propagators is related to the Gribov problem

and confinement [18]. In addition, it has been shown that center vortices play a crucial role

in the infrared enhancement of ghosts [19]. Thus, the following picture emerges: Degrees

of freedom belonging to the indefinite-metric part of state space like the ghosts in Landau

gauge or ghosts and Coulomb gluons in Coulomb gauge are infrared enhanced. This infrared

enhancement is related directly to an effective cutoff at the first Gribov horizon [7, 14].

The corresponding “excitations” are confining in that they mediate long-range correlations.

Transverse gluons, on the other hand, are confined by these modes. The infrared part

of the transverse gluon propagator is strongly suppressed. Besides an intuitive picture of

confinement, this also provides a formal line of reasoning: Violations of positivity remove

these states from the S matrix. Based on the relation of this picture to center vortices [19]

it seems natural to speculate about the importance of topological field configurations in this

context.

Although the picture, emerging from different methods described above, is in itself con-

sistent and thus convincing, it is not yet complete. Finite-volume effects prevent lattice

calculations to explore the extreme infrared. Functional continuum-based methods on the

other hand necessarily involve truncations and the related errors are hard to control. For

the functional methods the Landau gauge is advantageous due to its non-renormalization
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of the ghost-gluon vertex [20, 21]. To all orders in perturbation theory, the Landau gauge

ghost-gluon vertex does not develop a genuine ultraviolet divergence, and especially for van-

ishing incoming ghost momentum it stays bare. Furthermore, it has been argued that, in the

extreme infrared, the gauge fixing term dominates over the Yang-Mills action [7]. Therefore,

the infrared behaviour of all Green functions is expected to be dominated by contributions

involving ghosts. This hypothesis has been tested for the gluon and ghost propagators and

has proven to be correct, thus alleviating very strongly the issue of truncation induced er-

rors. At this point, a truly non-perturbative investigation of the ghost-gluon vertex has a

twofold aim: First, it will add a further test of ghost dominance in the infrared. Second, and

more importantly, the result is crucial to assess the validity of recent investigations based on

functional methods as all but the very first investigations1 [22, 23] used a bare ghost-gluon

vertex. Thus, we will present a semi-perturbative calculation of the ghost-gluon vertex based

on its Dyson-Schwinger equation (DSE). For this project, it has proven advantageous that

lattice results for the Landau gauge ghost-gluon vertex have been published very recently

[24]. We will compare our predictions to these data.

This letter is organized as follows: To make it reasonably self-contained we will briefly

discuss the non-perturbative gluon- and ghost propagators as they emerge from the solutions

of their DSE’s, truncated at the level of propagators. Then, a truncation for the DSE of

the ghost-gluon vertex will be given. We then discuss the results of a semi-perturbative

evaluation of this vertex. To this end, two types of input for the vertex to be calculated

are used. This, and the comparison to lattice results, provides strong evidence that the full,

non-perturbative ghost-gluon vertex is very close to the tree-level one for all momenta.

Gluon- and ghost propagators in Landau gauge QCD

In Euclidean momentum space the Landau gauge gluon and ghost propagators, Dµν(p)

and DG(p), can be generically written as

Dµν(p, µ
2) =

(

δµν −
pµpν

p2

)

Z(p2, µ2)

p2
, DG(p, µ2) = −

G(p2, µ2)

p2
, (1)

where µ2 denotes the renormalisation scale, and Z(p2, µ2) and G(p2, µ2) are the gluon and

ghost dressing functions. They can be determined from a solution of their DSE’s [4, 25, 26]

using a well-established truncation scheme [22, 25]. A recent comparison of these solutions

to the corresponding lattice results can be found in ref. [27, 28]. In the infrared, i.e. for

infinitesimally small p2, these equations can be solved analytically [7, 21, 22] and one finds

simple power laws,

Z(p2, µ2) ∼ (p2)2κ+2−D/2 , G(p2, µ2) ∼ (p2)−κ , (2)

1In these studies a ghost-gluon vertex which is an approximate solution to the corresponding Slavnov-
Taylor identity has been employed.
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for the gluon- and ghost dressing function with exponents related to each other and to the

dimensionality D. Here κ is an irrational number, κ ≈ 0.595 for D = 4 and κ ≈ 0.398 for

D = 3 [21, 29]. These analytical results depend slightly on the truncation scheme2 [21, 26].

As mentioned above, this is in agreement with the Kugo-Ojima confinement criterion and

Zwanziger’s horizon condition.

In four space-time dimensions the ghost- and gluon dressing functions can be used to

define a non-perturbative running coupling [22]

α(p2) = α(µ2) G2(p2, µ2) Z(p2, µ2) . (3)

Due to the ultraviolet finiteness of the ghost-gluon vertex in Landau gauge, no vertex function

appears in this definition. Note, that the r.h.s. of eq. (3) is a renormalization group invariant,

and thus α(p2) does not depend on the renormalization point. From the analytical power laws

(2) one infers that the coupling has a fixed point in the infrared, given by α(0) ≈ 8.92/Nc.

The infrared dominance of the ghosts imply that α(0) depends only weakly on the dressing

of the ghost-gluon vertex and not at all on other vertex functions [21].

In the following, for the calculation of the ghost-gluon vertex in four space-time dimen-

sions the pointwise accurate fit [25]

α(p2) =
α(0)

ln(e + a1p2a2 + b1p2b2)
, R(p2) =

cp2κ + dp4κ

1 + cp2κ + dp4κ
,

Z(p2) =

(

α(p2)

α(µ2)

)1+2δ

R2(p2) , G(p2) =

(

α(p2)

α(µ2)

)

−δ

R−1(p2) , (4)

will be used. It employs fitting parameters a1, a2, b1, b2 and c, d for the running coupling

α(p2) and the auxiliary function R(p2), respectively. Here, δ = −9/44, is the anomalous

dimension of the ghost dressing function and α(µ2 = (1.31 GeV)2) = 0.9676. The six

parameters of the fit are given by a1 = 5.292 GeV−2a2 , a2 = 2.324, b1 = 0.034 GeV−2b2 ,

b2 = 3.169, c = 1.8934 GeV−2κ and d = 4.6944 GeV−4κ. For the calculation in D = 3, the

numerical results for G(p2) and Z(p2) [26] are directly used.

Ghost-Gluon Vertex

In the Landau gauge, the most general tensor structure of the ghost-gluon vertex with

gluon momentum k and ghost momenta p and q is given by

Γabc
µ (k; q, p) = igD

(

qµ

(

fabc + Aabc(k2; q2, p2)
)

+ kµB
abc(k2; q2, p2)

)

, (5)

where Aabc and Babc are scalar functions describing the deviation from the tree-level form, and

gD is the coupling constant. As there is no indication for a colour structure different from the

2For D = 4 one can show independent of any truncation that κ > 0 [30].
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pq

µ

= + +

Figure 1: The truncated DSE for the ghost-gluon vertex [31, 32]. Dotted lines denote ghosts,
and wiggly lines gluons. Lines with a dot indicate full propagators. Vertices with small black
dots represent bare vertices and open circles represent full vertices. Contributions from the
ghost-gluon scattering kernel have been neglected.

one occurring in perturbation theory [2] we assume that Aabc(k2; q2, p2) =: fabcA(k2; q2, p2)

and Babc(k2; q2, p2) =: fabcB(k2; q2, p2). Note, that B is only relevant off-shell.

A truncated DSE for the ghost-gluon vertex3, neglecting four-point functions, is shown in

Fig. 1. Although the ghost-gluon scattering kernel is neglected, a self-consistent solution of

this equation, together with the propagator equations, is of significant technical complexity.

Fortunately, as we will see below, such a procedure is not necessary. It is sufficient to perform

a semi-perturbative calculation, i.e. to do one iteration step in the ghost-gluon vertex DSE.

If our starting hypothesis is correct, the resulting vertex should not significantly deviate from

the input tree-level vertex. As a further test, we will also employ as input an ansatz for the

ghost-gluon vertex, which is an approximate solution of the corresponding Slavnov-Taylor

identity [22]

Γabc
µ (k; q, p) = igDqµ

(

G(k2)

G(q2)
+

G(k2)

G(p2)
− 1

)

. (6)

First, we will present the results with the input vertices left bare and only the propagators

dressed as described above. The results are displayed in Fig. 2 for the D = 4 case and in

Fig. 3 for D = 3. Note these functions have the proper ghost-antighost symmetry [21], e.g.

A(k2; q2, p2) = A(k2; p2, q2) [31]. The transverse part of the ghost-gluon vertex, 1 + A, is

extracted employing

k2

igD∆
qν

(

δµν −
kµkν

k2

)

Γabc
µ (k; q, p) = fabc(1 + A(k2; q2, p2)) (7)

where ∆ = q2k2 − (q · k)2 is a Gram determinant. The deviations of the transverse part

from tree-level are clearly less than 20%. This is true for all momenta allowed by momentum

conservation [31]. In addition, also the longitudinal part, B(k2; q2, p2), is smaller than 0.2

for almost all momenta and finite everywhere.

Thus, our results indicate that the full self-consistent solution will likely be very close

to the tree-level form. A crucial further test is provided, if the non-trivial form (6) is used
3The complete DSE for the ghost-gluon vertex is given in [31].
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Figure 2: The normalized transverse part 1+A (left panel) and the normalized longitudinal
part B (right panel) of the ghost-gluon vertex for D = 4 in various kinematical regions.
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Figure 3: Same as Fig. 2 for D = 3.
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Figure 4: Same as Fig. 2 but here with eq. (6) as input for the ghost-gluon vertex. The
input vertices are denoted by (STI) and represented by crosses.
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Figure 5: The function 1 + A(0; p, p) for D=4 and two colours as compared to the corre-
sponding lattice results [24]. The left panel shows the results obtained with symmetrically
chosen momenta, the right panel with an asymmetric choice, see ref. [24] for further details.

as input on the r.h.s. of the the equation for the ghost-gluon vertex.4 Several observations

can be inferred from Figs. 4. First, also in this case deviations from tree-level are small,

except for those kinematical regions where an infrared singularity is enforced by the ansatz

(6). Second, and even more important, the calculated vertex function A is much closer to

the tree-level case than the input. A systematic study of possible input vertex choices yields

the same result [31]. Furthermore, for D = 3 the results are very similar to the D = 4 ones

[31].

Finally, we want to compare our results to recent lattice results [24] in Fig. 5. These

calculations have been performed for gauge group SU(2). Thus, we change the colour pref-

actor of the loop diagrams in Fig. 1 accordingly.5 Also, in the lattice calculation only the

ghost-gluon vertex for vanishing gluon momentum has been determined, i.e. in our notation

1 + A(0; p, p) has been calculated. Furthermore, the smallest momentum available on the

lattice is 366 MeV, and this only at the expense of an asymmetrically chosen momentum, see

ref. [24] for more details. Note that for symmetrically chosen momenta, see left panel of Fig.

5, the lattice results for the vertex are less affected by the breaking of rotational symmetry.

Given the systematic error in the lattice calculation, one can conclude that the lattice results

are, within errors, consistent with the tree-level form at all momenta considered. Our results

nicely match this behaviour. In addition, we predict a slight decrease at small momenta.

A feature of our results is the seemingly non-uniform limit for the functions A and B

when all three momenta vanish. As these functions are finite, the full ghost-gluon vertex

(including the corresponding prefactors, see eq. 5) is regular. In particular, for vanishing

incoming ghost momentum, the ghost-gluon vertex is bare as expected [20, 21].

4The 3-gluon vertex will still be taken bare as it is not expected that this vertex changes drastically in
the infrared.

5This prefactor is fabcNc/2 for a general number of colours.
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Conclusions

We have presented approximate non-perturbative solutions for the ghost-gluon vertex in

Landau gauge for Euclidean momenta in D = 4 and D = 3. To this end, we have employed

non-perturbative gluon and ghost propagators. We used two types of input for the ghost-

gluon vertex in the loop diagrams in order to estimate the behaviour of a fully self-consistent

solution. We have also compared our results to those of a recent lattice calculation.

These results, when taken together, show rather conclusively that deviations of the ghost-

gluon vertex from its tree-level value are very small, especially in the infrared. They thus

validate the truncation scheme used to calculate the propagators of the Yang-Mills theory.

More importantly, they confirm the strong evidence for infrared ghost dominance in Landau

gauge, and thus for the Zwanziger-Gribov scenario, as they fulfill Zwanziger’s hypothesis of

a bare ghost-gluon vertex in the infrared.

The results are not expected to change qualitatively when including matter fields, since

the input propagators are rather insensitive [4, 26] to quark contributions and no additional

terms appear in the truncated DSE. This is quite distinct from similar calculations for

the quark-gluon vertex, which find significant deviations from the tree-level form, possibly

involving infrared divergences [33].

In summary, the results presented here, nicely match a picture of confinement where the

confining fields are on or near the Gribov horizon. They provide a further piece of evidence

for a confinement mechanism of the Kugo-Ojima or Zwanziger-Gribov type.
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